Dee Finney's blog
start date July 20, 2011
today's date August 1, 2014
page 721
TOPIC: THIS IS LIFE
8-1-14 - DREAM I seemed to be in a school room, looking at a board. A man was with me who was the teacher. He was moving numbered letter symbols around the upper part of the board, which seemed like a number with one or two letters.
When he was done moving them around, he said, "Now! THAT is living!"
NOTE: While I was researching this, a voice in my head said. "That's what is important to a Father. You totally missed it!"
I'm sure he was referring to my Father's decision not to have me educated to go to college. He just wanted me to get the kind of education that would get me a job, because as he said to me. "Girls only go to college to find a man and get married."
I got that message loud and clear. At age 13, I wanted to be a teacher and a librarian, which is why I'm obsessed with books and educating myself on many subjects, and when I worked, I went to night school for many different parts of my job, and the company paid for those courses.
In business, the companies want their personnel to be educated. So I have a whole drawer full of certificates, and a house full of books on every imaginable topic you can think of.
NOTE: BY THE TIME I GOT DOWN TO THE BOTTOM OF THIS PAGE, I WAS ASKING QUESTIONS OF MYSELF, WHY ARE WE CREATING MORE AND MORE RADIOACTIVE ISOTOPES WITH A HALF LIFE OF MERE MILLISECONDS AND WHO FUNDS LIVERMORE AND OTHER LABS LIKE THEM. WE SHOULD BE FINDING NEW WAYS TO HEAL DISEASES, NOT HOW MANY WAYS CAN WE KILL MANKIND AND HOW FAST CAN WE DO IT!
en.wikipedia.org/wiki/Lawrence_Livermore_National_Laboratory -
Lawrence Livermore National Laboratory (LLNL) is a federal research facility in ... it is primarily funded by the United States Department of Energy (DOE) and ...
https://www.llnl.gov/ - Similarto Lawrence Livermore National Laboratory (LLNL)
National security laboratory aiming to ensure the safety, security, and reliability of the U.S. nuclear deterrent, reduce threats to national and global security, ...
NOTE: Those of us who really pay attention to what is going on in the world, know that there are MORE elements than those listed here.
Here is element 115, which we heard of first when John Lear and his buddy Bob Lazar were hanging out at Area 51 some years ago.
www.greatdreams.com/John-Lear.htm
John Lear, retired airline captain, with over 19,000 hours of flight-time, has flown in over 100 different types of planes in 60 different counties around the world.
www.greatdreams.com/joe-lear.htm
Nov 2, 2003 ... John Lear says he knows it all - other people say they know it all, but nobody else knows it. If he knew it all, they would have killed him, wouldn't ...
www.greatdreams.com/john_mack.htm -
Sep 27, 2004 ... At this time we must with great sorrow confirm that Dr John Mack has passed away in London, ..... www.greatdreams.com/John-Lear.htm. John ...
www.greatdreams.com/1953-aliens.htm -
these officers, such as Navy intelligence officer, William Cooper, Major John Lear (whose father founded the Learjet Corp.) and Air Force officer William English, ...
www.greatdreams.com/Falcon-Richard-Doty.htm -
Feb 26, 2005 ... ... crop of rumors being circulated around the UFO community by people such as John Lear. There were two groups of aliens, one malevolent, ...
www.greatdreams.com/ufos/zeta.htm -
Sep 22, 1999 ... Their facial features are very similar to the Zeta Reticuli greys and are of the ... www.greatdreams.com/dogstar.htm. John Lear - UFOs and ...
AND MY UFO INDEX http://www.greatdreams.com/ufos.htm
Ununpentium is the temporary name of a synthetic superheavy element in theperiodic table that has the temporary symbol Uup and has the atomic number115.
It is placed as a heavier homologue to bismuth and the heaviest member of group 15 (VA). It was first observed in 2003 and about 50 atoms of ununpentium have been synthesized to date, with about 25 direct decays of the parent element having been detected. Four consecutive isotopes are currently known, 287–290Uup, with 289Uup having the longest measured half-life of ~200 ms. On August 27, 2013, researchers at GSI from Lund University in Sweden reported confirming the existence of the element. On September 10, 2013, researchers from the same research group working in Darmstadt, Germany reported synthesis as well.
General properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name,symbol | ununpentium, Uup | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pronunciation |
i/uːnuːnˈpɛntiəm/ oon-oon-pen-tee-əm |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance | unknown | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ununpentium in the periodic table | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic number | 115 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight | [289] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Element category | unknown, but probably a post-transition metal | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Group, period,block | group 15 (pnictogens), period 7,p-block | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [Rn]
5f14 6d10 7s2 7p3 (predicted)[1] per shell: 2, 8, 18, 32, 32, 18, 5 (predicted) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phase | solid (predicted)[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting point | 670 K, 400 °C, 750(predicted)[1][2] °F | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling point | ~1400 K, ~1100 °C, ~2000(predicted)[1] °F | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density(near r.t.) | 13.5 (predicted)[2] g·cm−3(at 0 °C, 101.325 kPa) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | 5.90–5.98(extrapolated)[3] kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 138 (predicted)[2] kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidation states | 1, 3 (prediction)[1][2] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionization energies | 1st: 538.4 (predicted)[1] kJ·mol−1 2nd: 1756.0(predicted)[2] kJ·mol−1 3rd: 2653.3(predicted)[2] kJ·mol−1 (more) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius | empirical: 187(predicted)[1][2] pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 156–158 (extrapolated)[3] pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Miscellanea | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS Number | 54085-64-2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
History | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Naming | IUPAC systematic element name | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Discovery | Joint Institute for Nuclear Research and Lawrence Livermore National Laboratory(2003) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Most stable isotopes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Main article: Isotopes of ununpentium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
Problems playing this file? See media help. |
Ununpentium is the temporary name of a synthetic superheavy element in theperiodic table that has the temporary symbol Uup and has the atomic number115.
It is placed as a heavier homologue to bismuth and the heaviest member of group 15 (VA). It was first observed in 2003 and about 50 atoms of ununpentium have been synthesized to date, with about 25 direct decays of the parent element having been detected. Four consecutive isotopes are currently known, 287–290Uup, with 289Uup having the longest measured half-life of ~200 ms. On August 27, 2013, researchers at GSI from Lund University in Sweden reported confirming the existence of the element. On September 10, 2013, researchers from the same research group working in Darmstadt, Germany reported synthesis as well.
On February 2, 2004, synthesis of ununpentium was reported in Physical Review C by a team composed of Russian scientists at the Joint Institute for Nuclear Research in Dubna, and American scientists at the Lawrence Livermore National Laboratory. The team reported that they bombarded americium-243 with calcium-48 ions to produce four atoms of ununpentium. These atoms, they report, decayed by emission of alpha-particles to ununtrium in approximately 100 milliseconds.
The Dubna–Livermore collaboration has strengthened their claim for the discovery of ununpentium by conducting chemical experiments on the decay daughter 268Db. In experiments in June 2004 and December 2005, the dubnium isotope was successfully identified by milking the Db fraction and measuring anySF activities. Both the half-life and decay mode were confirmed for the proposed 268Db which lends support to the assignment of Z=115 to the parent nuclei.
Sergei Dmitriev from the Flerov Laboratory of Nuclear Reactions (FLNR) in Dubna, Russia, has formally put forward their claim of discovery of ununpentium to the IUPAC/IUPAP Joint Working Party (JWP). In 2011, the IUPAC evaluated the Dubna–Livermore results and concluded that they did not meet the criteria for discovery.
Ununpentium is historically known as eka-bismuth. Ununpentium is a temporary IUPAC systematic element name derived from the digits 115, where "un-" represents Latin unum. "Pent-" represents the Greek word for 5. For more, seesystematic element name.
The team at Dubna are currently running another series of experiments on the243Am(48Ca,xn) reaction. They are attempting to complete the 4n excitation function and confirm the data for 287Uup. They are also hoping to identify some decays from the 2n and 5n exit channels. This reaction will run until the Christmas shutdown.
The FLNR also have future plans to study light isotopes of element 115 using the reaction 241Am + 48Ca.
A team of researchers at Lund University announced they had corroborated the 2004 findings in August 2013 by shooting calcium ions into a thin film of americium. Researchers at the GSI Helmholtz in Darmstadt, Germany reported the successful synthesis of ununpentium using the same reaction just two weeks later, on September 10, 2013.
The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z=115. Each entry is a combination for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.
Target | Projectile | CN | Attempt result |
---|---|---|---|
208Pb | 75As | 283Uup | Reaction yet to be attempted |
232Th | 55Mn | 287Uup | Reaction yet to be attempted |
238U | 51V | 289Uup | Failure to date |
237Np | 50Ti | 287Uup | Reaction yet to be attempted |
244Pu | 45Sc | 289Uup | Reaction yet to be attempted |
243Am | 48Ca | 291Uup[17][18] | Successful reaction |
241Am | 48Ca | 289Uup | Planned Reaction |
248Cm | 41K | 289Uup | Reaction yet to be attempted |
249Bk | 40Ar | 289Uup | Reaction yet to be attempted |
249Cf | 37Cl | 286Uup | Reaction yet to be attempted |
Hot fusion reactions are processes that create compound nuclei at high excitation energy (~40–50 MeV, therefore "hot"), leading to a reduced probability of survival from fission. The excited nucleus then decays to the ground state via the emission of 3–5 neutrons. Fusion reactions utilizing 48Ca nuclei usually produce compound nuclei with intermediate excitation energies (~30–35 MeV) and are sometimes referred to as "warm" fusion reactions. This leads, in part, to relatively high yields from these reactions.
There are strong indications that this reaction was performed in late 2004 as part of a uranium(IV) fluoride target test at the GSI. No reports have been published, suggesting that no product atoms were detected, as anticipated by the team.
This reaction was first performed by the team in Dubna in July–August 2003. In two separate runs, they were able to detect 3 atoms of 288Uup and a single atom of 287Uup. The reaction was studied further in June 2004 in an attempt to isolate the descendant 268Db from the 288Uup decay chain. After chemical separation of a +4/+5 fraction, 15 SF decays were measured with a lifetime consistent with 268Db. In order to prove that the decays were from dubnium-268, the team repeated the reaction in August 2005 and separated the +4 and +5 fractions and further separated the +5 fractions into tantalum-like and niobium-like ones. Five SF activities were observed, all occurring in the +5 fractions and none in the tantalum-like fractions, proving that the product was indeed isotopes of dubnium.
In a series of experiments between October 2010 – February 2011, scientists at the FLNR studied this reaction at a range of excitation energies. They were able to detect 21 atoms of 288Uup and one atom of 289Uup, from the 2n exit channel. This latter result was used to support the synthesis of ununseptium. The 3n excitation function was completed with a maximum at ~8 pb. The data was consistent with that found in the first experiments in 2003.
Isotope | Year discovered | Discovery reaction |
---|---|---|
287Uup | 2003 | 243Am(48Ca,4n) |
288Uup | 2003 | 243Am(48Ca,3n) |
289Uup | 2009 | 249Bk(48Ca,4n)[4] |
290Uup | 2009 | 249Bk(48Ca,3n)[4] |
Ununpentium is projected to be the third member of the 7p series of chemical elements and the heaviest member of group 15 (VA) in the Periodic Table, below bismuth. In this group, each member is known to portray the group oxidation state of +V but with differing stability. For nitrogen, the +V state is very difficult to achieve due to the lack of low-lying d-orbitals and the inability of the small nitrogen atom to accommodate five ligands. The +V state is well represented for phosphorus, arsenic, and antimony. However, for bismuth it is rare due to the reluctance of the 6s2 electrons to participate in bonding. This effect is known as the "inert pair effect" and is commonly linked to relativistic stabilisation of the 6s-orbitals. It is expected that ununpentium will continue this trend and portray only +III and +I oxidation states. Nitrogen(I) and bismuth(I) are known but rare and ununpentium(I) is likely to show some unique properties. Because of spin-orbit coupling, flerovium may display closed-shell or noble gas-like properties; if this is the case, ununpentium will likely be monovalent as a result, since the cation Uup+ will have the same electron configuration as flerovium.
Ununpentium should display eka-bismuth chemical properties and should therefore form a sesquioxide, Uup2O3, and analogouschalcogenides, Uup2S3, Uup2Se3 and Uup2Te3. It should also form trihydrides and trihalides, i.e. UupH3, UupF3, UupCl3, UupBr3 and UupI3. If the +V state is accessible, it is likely that it is only possible in the fluoride, UupF5.
All the reported above isotopes of element 115, obtained by nuclear collisions of lighter nuclei, are severely neutron-deficient, because the proportion of neutrons to protons needed for maximum stability increases with atomic number. The most stable isotope will probably be 299Uup, with 184 neutrons, a known "magic" closed-shell number conferring exceptional stability, making it (with one further proton outside the "magic number" of 114 protons) both the chemical and the nuclear homolog of 209Bi; but the technology required to add the required neutrons presently does not exist. This is because no known combination of target and projectile can result in the required neutrons. It has been suggested that such a neutron-rich isotope could be formed by quasifission (fusion followed by fission) of a massive nucleus, multi-nucleon transfer reactions in collisions of actinidenuclei, or by the alpha decay of a massive nucleus (although this would depend on the stability of the parent nuclei towards spontaneous fission).
Periodic table (Large version) | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||||||||||||||||
1 | H | He | |||||||||||||||||||||||||||||||
2 | Li | Be | B | C | N | O | F | Ne | |||||||||||||||||||||||||
3 | Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||||||||||||||||
4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |||||||||||||||
5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |||||||||||||||
6 | Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |
7 | Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | 113 | Fl | 115 | Lv | 117 | 118 | |
|
HERE IS ELEMENT 118
General properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name,symbol | ununoctium, Uuo | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pronunciation |
i/uːn.uːnˈɒktiəm/ oon-oon-ok-tee-əm |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance | unknown | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ununoctium in the periodic table | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic number | 118 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight | [294] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Element category | unknown, but probably a noble gas | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Group, period,block | group 18, period 7, p-block | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [Rn]
5f14 6d10 7s2 7p6(predicted) per shell: 2, 8, 18, 32, 32, 18, 8(predicted) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phase | solid (predicted) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling point | 350±30 K, 80±30 °C, 170±50 °F(extrapolated)[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Liquid density | at m.p.: 4.9–5.1 g·cm−3(predicted)[3] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Critical point | 439 K, 6.8 MPa (extrapolated)[4] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | 23.5 kJ·mol−1 (extrapolated)[4] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 19.4 kJ·mol−1 (extrapolated)[4] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidation states | −1,[2] 0, +1,[5] +2,[6] +4,[6] +6[2](predicted) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionization energies | 1st: 839.4 kJ·mol−1 (predicted)[2] 2nd: 1563.1 kJ·mol−1(predicted)[7] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 157 pm (predicted)[8] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Miscellanea | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS Number | 54144-19-3[9] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
History | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Naming | IUPAC systematic element name | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Discovery | Joint Institute for Nuclear Research and Lawrence Livermore National Laboratory(2002) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Most stable isotopes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Main article: Isotopes of ununoctium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ununoctium is the temporary IUPAC name for the transactinide element with the atomic number 118 and temporary element symbol Uuo. It is also known aseka-radon or element 118, and on the periodic table of the elements it is a p-block element and the last one of the 7th period. Ununoctium is currently the onlysynthetic member of group 18. It has the highest atomic number and highestatomic mass of all the elements discovered so far.
The radioactive ununoctium atom is very unstable, due to its high mass, and since 2005, only three or possibly four atoms of the isotope 294Uuo have been detected. While this allowed very little experimental characterization of its properties and possible compounds, theoretical calculations have resulted in many predictions, including some unexpected ones. For example, although ununoctium is a member of group 18, it may possibly not be a noble gas, unlike all the other group 18 elements. It was formerly thought to be a gas undernormal conditions but is now predicted to be a solid due to relativistic effects.
In late 1998, Polish physicist Robert Smolańczuk published calculations on the fusion of atomic nuclei towards the synthesis of superheavy atoms, including ununoctium. His calculations suggested that it might be possible to make ununoctium by fusing lead with krypton under carefully controlled conditions.
In 1999, researchers at Lawrence Berkeley National Laboratory made use of these predictions and announced the discovery of livermorium and ununoctium, in a paper published in Physical Review Letters, and very soon after the results were reported in Science. The researchers reported to have performed the reaction
The following year, they published a retraction after researchers at other laboratories were unable to duplicate the results and the Berkeley lab itself was unable to duplicate them as well. In June 2002, the director of the lab announced that the original claim of the discovery of these two elements had been based on data fabricated by principal author Victor Ninov.
The first decay of atoms of ununoctium was observed at the Joint Institute for Nuclear Research (JINR) by Yuri Oganessian and his group in Dubna, Russia, in 2002. On October 9, 2006, researchers from JINR and Lawrence Livermore National Laboratory of California, US, working at the JINR in Dubna, announced that they had indirectly detected a total of three (possibly four) nuclei of ununoctium-294 (one or two in 2002and two more in 2005) produced via collisions of californium-249 atoms and calcium-48 ions.
In 2011, IUPAC evaluated the 2006 results of the Dubna-Livermore collaboration and concluded: "The three events reported for the Z = 118 isotope have very good internal redundancy but with no anchor to known nuclei do not satisfy the criteria for discovery".
Because of the very small fusion reaction probability (the fusion cross section is~0.3–0.6 pb or (3–6)×10−41 m2) the experiment took four months and involved a beam dose of 4×1019 calcium ions that had to be shot at the californium target to produce the first recorded event believed to be the synthesis of ununoctium. Nevertheless, researchers are highly confident that the results are not a false positive, since the chance that the detections were random events was estimated to be less than one part in100000.
In the
experiments, the alpha-decay of three atoms of ununoctium was observed.
A fourth decay by direct spontaneous
fission was also
proposed. A half-life of
0.89 ms was calculated: 294
Uuo decays
into 290
Lv by alpha
decay. Since there were only three nuclei, the half-life derived
from observed lifetimes has a large uncertainty: 0.89+1.07
−0.31 ms.
The identification
of the 294
Uuo nuclei
was verified by separately creating the putative
daughter nucleus 290
Lv directly
by means of a bombardment of 245
Cm with 48
Ca ions,
and checking that
the 290
Lv decay
matched the decay a
chain of the 294
Uuo nuclei. The
daughter nucleus 290
Lv is
very unstable able, decaying with a
lifetime of 14 milliseconds into 286
Fl,
which may experience either spontaneous
fission or alpha decay
into 282
Cn,
which will undergo spontaneous fission.
In a
quantum-tunneling model, the alpha decay half-life of 294
Uuo was
predicted to be 0.66+0.23
−0.18 ms with
the experimental Q-value published in 2004. Calculation
with theoretical Q-values from the macroscopic-microscopic model of
Muntian–Hofman–Patyk–Sobiczewski gives somewhat low but comparable
results.
Until the 1960s ununoctium was known as eka-emanation (emanation is the old name for radon). In 1979 the IUPACpublished recommendations according to which the element was to be called ununoctium, a systematic element name, as aplaceholder until the discovery of the element is confirmed and the IUPAC decides on a name.
Before the retraction in 2002, the researchers from Berkeley had intended to name the element ghiorsium (Gh), after Albert Ghiorso (a leading member of the research team).
The Russian discoverers reported their synthesis in 2006. In 2007, the head of the Russian institute stated the team were considering two names for the new element: flyorium, in honor of Georgy Flyorov, the founder of the research laboratory in Dubna; and moskovium, in recognition of the Moscow Oblast where Dubna is located. He also stated that although the element was discovered as an American collaboration, who provided the californium target, the element should rightly be named in honor of Russia since the Flerov Laboratory of Nuclear Reactions at JINR was the only facility in the world which could achieve this result. These names were later proposed for element 114 (flerovium) and element 116 (moscovium). However, the final name proposed for element 116 was instead livermorium.
No name has yet been officially suggested for the element as no claims for discovery have yet been accepted by the IUPAC. According to current guidelines from IUPAC, the ultimate name for all new elements should end in "-ium", which means the name for ununoctium will almost certainly end in "-ium", not "-on", even if ununoctium turns out to be a noble gas, which traditionally have names ending in "-on" (with the exception of helium, which was not known to be a noble gas when it was discovered).
The stability of nuclei decreases greatly with the increase in atomic number after plutonium, the heaviest primordial element, so that all isotopes with an atomic number above101 decay radioactively with a half-life under a day, with an exception of dubnium-268. No elements with atomic numbers above 82 (after lead) have stable isotopes. Nevertheless, because of reasons not very well understood yet, there is a slight increased nuclear stability around atomic numbers 110–114, which leads to the appearance of what is known in nuclear physics as the "island of stability". This concept, proposed by University of California professor Glenn Seaborg, explains why superheavy elements last longer than predicted. Ununoctium is radioactive and has a half-life that appears to be less than a millisecond. Nonetheless, this is still longer than some predicted values, thus giving further support to the idea of this "island of stability".
Calculations using a quantum-tunneling model predict the existence of several neutron-rich isotopes of ununoctium with alpha-decay half-lives close to 1 ms.
Theoretical calculations done on the synthetic pathways for, and the half-life of, other isotopes have shown that some could be slightly more stable than the synthesized isotope 294Uuo, most likely 293Uuo, 295Uuo, 296Uuo, 297Uuo, 298Uuo, 300Uuo and302Uuo. Of these, 297Uuo might provide the best chances for obtaining longer-lived nuclei, and thus might become the focus of future work with this element. Some isotopes with many more neutrons, such as some located around 313Uuo could also provide longer-lived nuclei.
Ununoctium is a member of group 18, the zero-valence elements. The members of this group are usually inert to most common chemical reactions (for example, combustion) because the outer valence shell is completely filled with eight electrons. This produces a stable, minimum energy configuration in which the outer electrons are tightly bound. It is thought that similarly, ununoctium has a closed outer valence shell in which its valence electrons are arranged in a 7s27p6 configuration.
Consequently, some expect ununoctium to have similar physical and chemical properties to other members of its group, most closely resembling the noble gas above it in the periodic table, radon. Following the periodic trend, ununoctium would be expected to be slightly more reactive than radon. However, theoretical calculations have shown that it could be quite reactive, so that it probably cannot be considered a noble gas. In addition to being far more reactive than radon, ununoctium may be even more reactive than elements flerovium and copernicium. The reason for the apparent enhancement of the chemical activity of ununoctium relative to radon is an energetic destabilization and a radial expansion of the last occupied 7p-subshell. More precisely, considerable spin–orbit interactions between the 7p electrons with the inert 7s2 electrons, effectively lead to a second valence shell closing at flerovium, and a significant decrease in stabilization of the closed shell of element 118. It has also been calculated that ununoctium, unlike other noble gases, binds an electron with release of energy—or in other words, it exhibits positive electron affinity.
Ununoctium is expected to have by far the broadest polarizability of all elements before it in the periodic table, and almost twofold of radon. By extrapolating from the other noble gases, it is expected that ununoctium has a boiling point between 320 and 380 K. This is very different from the previously estimated values of 263 K or 247 K. Even given the large uncertainties of the calculations, it seems highly unlikely that ununoctium would be a gas under standard conditions, and as the liquid range of the other gases is very narrow, between 2 and 9 kelvins, this element should be solid at standard conditions. If ununoctium forms a gas under standard conditions nevertheless, it would be one of the densest gaseous substances at standard conditions (even if it is monatomic like the other noble gases).
Because of its tremendous polarizability, ununoctium is expected to have an anomalously low ionization energy (similar to that of lead which is 70% of that of radon and significantly smaller than that of flerovium) and a standard state condensed phase.
No compounds of ununoctium have been synthesized yet, but calculations on theoretical compoundshave been performed since 1964. It is expected that if the ionization energy of the element is high enough, it will be difficult to oxidize and therefore, the most common oxidation state will be 0 (as for other noble gases); nevertheless, this appears not to be the case.
Calculations on
the diatomic
molecule Uuo
2 showed a bonding interaction
roughly equivalent to that calculated for Hg
2, and a dissociation
energy of 6 kJ/mol,
roughly 4 times of that of Rn
2. But most strikingly, it was
calculated to have a bond
length shorter than in Rn
2 by 0.16 Å, which would be
indicative of a significant bonding interaction. On
the other hand, the compound UuoH+ exhibits
a dissociation energy (in other words proton
affinity of Uuo) that is
smaller than that of RnH+.
The bonding between
ununoctium and hydrogen in
UuoH is predicted to be very limp and can be regarded as a pure van
der Waals interaction rather
than a true chemical
bond. On the other hand,
with highly electronegative elements, ununoctium seems to form more
stable compounds than for example copernicium or flerovium. The
stable oxidation states +2 and +4 have been predicted to exist in the fluorides UuoF
2 and UuoF
4. The +6 state would be less
stable due to the strong binding of the 7p1/2 subshell. This
is a result of the same spin-orbit interactions that make ununoctium
unusually reactive. For example, it was shown that the reaction of
ununoctium with F
2 to form the compound UuoF
2 would release an energy of 106
kcal/mol of which about 46 kcal/mol come from these interactions. For
comparison, the spin-orbit interaction for the similar molecule RnF
2 is about 10 kcal/mol out of a
formation energy of 49 kcal/mol. The
same interaction stabilizes the tetrahedral
Td configuration forUuoF
4, as distinct from the square
planar D4h one of XeF
4 which RnF
4 is also expected to have. The
Uuo–F bond will most probably be ionic rather
than covalent,
rendering the UuoFn compounds
non-volatile. UuoF2 is
predicted to be partiallyionic due
to ununoctium's high electropositivity. Unlike
the other noble gases (except possibly xenon), ununoctium
was predicted to be sufficiently electropositive to
form a Uuo–Cl bond with chlorine.
[hide] Periodic table (Large version) | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||||||||||||||||
1 | H | He | |||||||||||||||||||||||||||||||
2 | Li | Be | B | C | N | O | F | Ne | |||||||||||||||||||||||||
3 | Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||||||||||||||||
4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |||||||||||||||
5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |||||||||||||||
6 | Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |
7 | Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | 113 | Fl | 115 | Lv | 117 | 118 | |
|
THIS IS WHERE I POST WHAT I'M DOING AND THINKING
BLOG INDEX 2011
BLOG INDEX 2012 - page 1 JANUARY THRU APRIL 2012
MAY THRU AUGUST 2012
SEPTEMBER THRU DECEMBER
BLOG INDEX 2013
BLOG INDEX - PAGE 2 - 2013
BLOG INDEX - PAGE 3 - 2013
BLOG INDEX 2014
BLOG INDEX - PAGE 2 2014 |