Simple Algebra..............................................Parts
sum(q, q') = (t + t', V + V')...................scalar(q) = (q + q*)/2 = (t, 0)
dif(q, q') = (t - t', V - V')......................vector(q) = (q - q*)/2 = (0, V)
conj(q) = q* = (t, -V)........................|q| = (q* q)^.5 = ((t^2 + V.V)^.5, 0)
inv(q) = q*/(q* q) = (t, -V) / |q|^2..............norm(q) = (t^2 + V.V, 0)
adj(q) = q* q* q = (t, -V).......................|q|^2det(q) = ((t^2 + V.V)^2, 0)
Trig
sin(q) = (sin(t) cosh(|V|),
cos(q) = (cos(t) cosh(|V|),
tan(q) = sin() / cos()
asin(q) = -V/|V| asinh(q V/|V|)
acos(q) = -V/|V| acosh(q)
atan(q) = -V/|V| atanh(q V/|V|)
sinh(q) = (sinh(t) cos(|V|),
cosh(q) = (cosh(t) cos(|V|),
tanh(q) = sinh(q) / cosh(q)
asinh(q) = ln(q + (q^2 + 1)^.5)
acosh(q) = ln(q +/- (q^2 - 1)^.5)
atanh(q) = .5 ln((1 + q)/(1 - q))
Powers
exp(q) = (exp(t) cos(|V|),
q ^ q' = exp(ln(q) x q')
Logs
ln(q) = (0.5 ln(t^2 + V.V),
log(q) = ln(q)/ln(10)
Multiplying using exponetials
q q' =
where
q* q' =
where
Andrew Millard suggested the commutators for the Grassman product.
© Copyright. Robert Grace. 2001