144 The Grids 
Date: 04/08/04

The 10x36 (360) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 (24th)

From Fibonacci 233 to 46368, there is such a spread of numbers that only the vertical column and horizontal row positions are certain. Any diagonal 45 degree relationships cannot be estimated, as is.

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-46368 linear sequence with a gap removed, between 160 and 230, that have no primes and no fibonacci numbers. Each Table then jumps to include fibonacci 233, then jumps again around 360 to include every fibonacci number to 46368 (24th). The number down the left side is the reference number (1, 11, 21, 31, etc.) in base 10.
The 1-10 is repeated upon a 10x36 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 3 prime has a linear relationship with 47 prime. 29 prime has a linear relationship with 47 prime and 83 prime. 7 prime has a linear relationship with 29 prime.

1
2
|P|
3
\P\
4
|P|
5
/P/
6
7
\P\
8
9
10
11
|P|
12
13
|P|
14
15
16
17
|P|
18
19
|P|
20
21
22
23
|P|
24
25
26
27
28
29
/P/
30
31
|P|
32
33
34
35
36
37
|P|
38
39
40
41
|P|
42
43
|P|
44
45
46
47
/P/
48
49
50
51
52
53
|P|
54
55
56
57
58
59
|P|
60
61
|P|
62
63
64
65
66
67
|P|
68
69
70
71
|P|
72
73
|P|
74
75
76
77
78
79
|P|
80
81
82
83
/P/
84
85
86
87
88
89
|P|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|P|
132
133
134
135
136
137
|P|
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
...
...
...
...
...
...
...
...
...
...
231
232
233
234
235
236
237
238
239
240
351
352
353
354
355
356
357
358
359
|P|
360
371
...
...
...
...
...
377
...
...
...
601
...
...
...
...
...
...
...
...
610
981
...
...
...
...
...
987
...
...
...
1591
...
...
...
...
...
1597
|P|
...
...
...
2581
...
...
2584
...
...
...
...
...
...
4181
...
...
...
...
...
...
...
...
...
6761
...
...
...
6765
...
...
...
...
...
10941
...
...
...
...
10946
...
...
...
...
17711
...
...
...
...
...
...
...
...
...
28651
...
...
...
...
...
28657
|P|
...
...
...
46361
...
...
...
...
...
...
46368
...
...

The 11x33 (363) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 (24th)

From Fibonacci 233 to 46368, there is such a spread of numbers that only the vertical column and horizontal row positions are certain. Any diagonal 45 degree relationships cannot be estimated, as is.

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-46368 linear sequence with a gap removed, between 154 and 232, that have no primes and no fibonacci numbers. Each Table then jumps to include fibonacci 233, then jumps again around 360 to include every fibonacci number to 46368 (24th). The number down the left side is the reference number (1, 12, 23, 34, etc.) in base 11.
The 1-11 is repeated upon a 11x33 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 3 prime has a linear relationship with 13 prime and 23 prime. 5 prime has a linear relationship with 17 prime and 29 prime. 7 prime has a linear relationship with 43 prime.

1
2
|P|
3
/P/
4
|P|
5
\P\
6
7
\P\
8
9
10
11
/P/
12
13
/P/
14
15
16
17
\P\
18
19
|P|
20
21
22
23
/P/
24
25
26
27
28
29
\P\
30
31
|P|
32
33
34
35
36
37
|P|
38
39
40
41
|P|
42
43
\P\
44
45
46
47
/P/
48
49
50
51
52
53
|P|
54
55
56
57
58
59
|P|
60
61
|P|
62
63
64
65
66
67
|P|
68
69
70
71
|P|
72
73
|P|
74
75
76
77
78
79
|P|
80
81
82
83
|P|
84
85
86
87
88
89
|P|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|P|
132
133
134
135
136
137
|P|
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
...
...
...
...
...
...
...
...
...
...
...
232
233
234
235
236
237
238
239
240
241
242
353
354
355
356
357
358
359
|P|
360
361
362
363
375
...
377
...
...
...
...
...
...
...
...
602
...
...
...
...
...
...
...
...
610
...
987
...
...
...
...
...
...
...
...
...
...
1591
...
...
...
...
...
1597
|P|
...
...
...
...
2581
...
...
2584
...
...
...
...
...
...
...
4181
...
...
...
...
...
...
...
...
...
...
6761
...
...
...
6765
...
...
...
...
...
...
10941
...
...
...
...
10946
...
...
...
...
...
17711
...
...
...
...
...
...
...
...
...
...
28651
...
...
...
...
...
28657
|P|
...
...
...
...
46361
...
...
...
...
...
...
46368
...
...
...

The 12x30 (360) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-360 linear sequence.
The 1-15 is repeated upon a 12x30 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 4 prime has a linear relationship with 17 prime and 43 prime. 5 prime has a linear relationship with 83 prime.

1
2
|P|
3
|P|
4
\P\
5
\P\
6
7
|P|
8
9
10
11
/P/
12
13
|P|
14
15
16
17
\P\
18
19
|P|
20
21
22
23
|P|
24
25
26
27
28
29
|P|
30
31
|P|
32
33
34
35
36
37
|P|
38
39
40
41
|P|
42
43
\P\
44
45
46
47
|P|
48
49
50
51
52
53
|P|
54
55
56
57
58
59
|P|
60
61
|P|
62
63
64
65
66
67
|P|
68
69
70
71
|P|
72
73
|P|
74
75
76
77
78
79
|P|
80
81
82
83
\P\
84
85
86
87
88
89
|P|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|P|
132
133
134
135
136
137
|P|
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
...
...
...
...
...
...
...
...
...
...
...
...
229
230
231
232
233
234
235
236
237
238
239
240
349
350
351
352
353
354
355
356
357
358
359
|P|
360

The 13x28 (364) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-364 linear sequence.
The 1-13 is repeated upon a 13x28 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 5 prime has a linear relationship, left, with 17 prime and 29 prime and also with 47 prime, right. 7 prime has a linear relationship with 43 prime. 11 prime has a linear relationship with 23 prime, 47 prime and 83 prime.

1
2
|P|
3
|P|
4
|P|
5
/\P\/
6
7
/P/
8
9
10
11
/P/
12
13
|P|
14
15
16
17
/P/
18
19
|P|
20
21
22
23
/P/
24
25
26
27
28
29
/P/
30
31
|P|
32
33
34
35
36
37
|P|
38
39
40
41
|P|
42
43
/P/
44
45
46
47
/\P/\
48
49
50
51
52
53
|P|
54
55
56
57
58
59
|P|
60
61
|P|
62
63
64
65
66
67
|P|
68
69
70
71
|P|
72
73
|P|
74
75
76
77
78
79
|P|
80
81
82
83
/P/
84
85
86
87
88
89
|P|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|P|
132
133
134
135
136
137
/P/
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|P|
360
361
362
363
364

The 14x26 (364) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-364 linear sequence.
The 1-14 is repeated upon a 14x26 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|, including a prime that goes left and right \/P\/. Some unique characteristics about this Table is that the center primes begin at 5 prime, 7 prime, 11 prime and 13 prime.

1
2
|P|
3
/P/
4
/P/
5
|P|
6
7
|P|
8
9
10
11
|P|
12
13
|P|
14
15
16
17
\/P/\
18
19
|P|
20
21
22
23
|P|
24
25
26
27
28
29
/P/
30
31
|P|
32
33
34
35
36
37
|P|
38
39
40
41
|P|
42
43
/P/
44
45
46
47
|P|
48
49
50
51
52
53
|P|
54
55
56
57
58
59
|P|
60
61
|P|
62
63
64
65
66
67
|P|
68
69
70
71
|P|
72
73
|P|
74
75
76
77
78
79
|P|
80
81
82
83
|P|
84
85
86
87
88
89
|P|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|P|
132
133
134
135
136
137
\P\
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|P|
360
361
362
363
364

The 15x24 (360) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-360 linear sequence.
The 1-15 is repeated upon a 15x24 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that the center prime is at 4 and 13 and the left and right 45 degree angles begin at 3 prime, 5 prime, 7 prime and 11 prime.

1
2
|P|
3
\P\
4
|P|
5
/P/
6
7
\P\
8
9
10
11
/P/
12
13
|P|
14
15
16
17
/P/
18
19
|P|
20
21
22
23
\P\
24
25
26
27
28
29
|P|
30
31
|P|
32
33
34
35
36
37
|P|
38
39
40
41
|P|
42
43
|P|
44
45
46
47
/P/
48
49
50
51
52
53
|P|
54
55
56
57
58
59
|P|
60
61
|P|
62
63
64
65
66
67
|P|
68
69
70
71
|P|
72
73
|P|
74
75
76
77
78
79
|P|
80
81
82
83
/P/
84
85
86
87
88
89
|P|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|P|
132
133
134
135
136
137
/P/
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|P|
360

The 16x23 (368) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-368 linear sequence.
The 1-16 is repeated upon a 16x23, reaching 16 per row.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 4 prime has a linear relationship with fibonacci 21, 55 and 89. 11 prime has a linear relationship with 131 prime. 13 prime has a linear relationship, left, with 43 prime and with 47 prime, right. 47 prime has a linear relationship with 137 prime.

1
2
|P|
3
|P|
4
\P\
5
|P|
6
7
|P|
8
9
10
11
/P/
12
13
\/P\/
14
15
16
17
|P|
18
19
|P|
20
21
22
23
|P|
24
25
26
27
28
29
|P|
30
31
|P|
32
33
34
35
36
37
|P|
38
39
40
41
|P|
42
43
|P|
44
45
46
47
\/P\/
48
49
50
51
52
53
|P|
54
55
56
57
58
59
|P|
60
61
|P|
62
63
64
65
66
67
|P|
68
69
70
71
|P|
72
73
|P|
74
75
76
77
78
79
|P|
80
81
82
83
|P|
84
85
86
87
88
89
|P|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/P/
132
133
134
135
136
137
|/P|/
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|P|
360
361
362
363
364
3656
366
367
368
|P|

The 17x21 (374) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-374 linear sequence.
The 1-17 is repeated upon a 17x22 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 5 prime has a linear relationship with 23 prime and 131 prime. 7 prime has a linear relationship with 43 prime. 11 prime also has a linear relationship with 43 prime, left and 29 prime, 47 prime and 83 prime, right.

1
2
|P|
3
|P|
4
|P|
5
\P\
6
7
\P\
8
9
10
11
\/P\/
12
13
\P\
14
15
16
17
|P|
18
19
|P|
20
21
22
23
\P\
24
25
26
27
28
29
\P\
30
31
|P|
32
33
34
35
36
37
|P|
38
39
40
41
|P|
42
43
\P\
44
45
46
47
\P\
48
49
50
51
52
53
|P|
54
55
56
57
58
59
|P|
60
61
|P|
62
63
64
65
66
67
|P|
68
69
70
71
|P|
72
73
|P|
74
75
76
77
78
79
|P|
80
81
82
83
\P\
84
85
86
87
88
89
|P|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|P|
132
133
134
135
136
137
|P|
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|P|
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

The 18x20 (360) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-360 linear sequence.
The 1-18 is repeated upon a 18x20, reaching 18 per row.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 4 prime has a linear relationship with 23 prime. 5 prime has a linear relationship with 43 prime. 13 prime has a linear relationship with 47 prime. 13 prime has a linear relationship with fibonacci 89.

1
2
|P|
3
|P|
4
\P\
5
\P\
6
7
|P|
8
9
10
11
|P|
12
13
/\P/\
14
15
16
17
/P/
18
19
|P|
20
21
22
23
\P\
24
25
26
27
28
29
|P|
30
31
|P|
32
33
34
35
36
37
|P|
38
39
40
41
|P|
42
43
\P\
44
45
46
47
/P/
48
49
50
51
52
53
|P|
54
55
56
57
58
59
|P|
60
61
|P|
62
63
64
65
66
67
|P|
68
69
70
71
|P|
72
73
|P|
74
75
76
77
78
79
|P|
80
81
82
83
|P|
84
85
86
87
88
89
|P|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|/P|/
132
133
134
135
136
137
|P|
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
221
222
223
224
225
226
227
228
229
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|P|
360

The 19x19 (361) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-361 linear sequence.
The 1-15 is repeated upon a 19x19 grid for the purpose of adding 5 extra notes (a 5th) to the 15 note series, reaching 19 per row.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that the center prime is at 7 and the left and right 45 degree angles begin at 3 prime and 11 prime.

There is also a linear relationship line between 11 prime and 137 prime.

131 prime and 359 prime are on the same vertical column as 17 prime. Is this what Mr. Henry was speaking about when he mentioned "square of 12 charts?"

1
2
|P|
3
\P\
4
\P\
5
\P\
6
7
|P|
8
9
10
11
/P/
12
13
\P\
14
15
16
17
/P/
18
19
|P|
20
21
22
23
\P\
24
25
26
27
28
29
/P/
30
31
|P|
32
33
34
35
36
37
|P|
38
39
40
41
|P|
42
43
\P\
44
45
46
47
/P/
48
49
50
51
52
53
|P|
54
55
56
57
58
59
|P|
60
61
|P|
62
63
64
65
66
67
|P|
68
69
70
71
|P|
72
73
|P|
74
75
76
77
78
79
|P|
80
81
82
83
|P|
84
85
86
87
88
89
|P|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|P|
132
133
134
135
136
137
/P/
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|P|
360
361

Back to: 143 The Invisible Universe

Impossible Correspondence Index

? Copyright. Robert Grace. ...4