144 The Grids
Date: 04/08/04
The 10x36 (360) Grid
A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.
FIBONACCI SERIES
The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 (24th)
From Fibonacci 233 to 46368, there is such a spread of numbers that only the vertical column and horizontal row positions are certain. Any diagonal 45 degree relationships cannot be estimated, as is.
PRIMES
The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)
The Table has a 1-46368 linear sequence with a gap removed, between 160 and 230, that have no primes and no fibonacci numbers. Each Table then jumps to include fibonacci 233, then jumps again around 360 to include every fibonacci number to 46368 (24th). The number down the left side is the reference number (1, 11, 21, 31, etc.) in base 10.
The 1-10 is repeated upon a 10x36 grid with no extra 5th.
Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 3 prime has a linear relationship with 47 prime. 29 prime has a linear relationship with 47 prime and 83 prime. 7 prime has a linear relationship with 29 prime.
1
|
2 |P|
|
3 \P\
|
4 |P|
|
5 /P/
|
6
|
7 \P\
|
8
|
9
|
10
|
11 |P|
|
12
|
13 |P|
|
14
|
15
|
16
|
17 |P|
|
18
|
19 |P|
|
20
|
21
|
22
|
23 |P|
|
24
|
25
|
26
|
27
|
28
|
29 /P/
|
30
|
31 |P|
|
32
|
33
|
34
|
35
|
36
|
37 |P|
|
38
|
39
|
40
|
41 |P|
|
42
|
43 |P|
|
44
|
45
|
46
|
47 /P/
|
48
|
49
|
50
|
51
|
52
|
53 |P|
|
54
|
55
|
56
|
57
|
58
|
59 |P|
|
60
|
61 |P|
|
62
|
63
|
64
|
65
|
66
|
67 |P|
|
68
|
69
|
70
|
71 |P|
|
72
|
73 |P|
|
74
|
75
|
76
|
77
|
78
|
79 |P|
|
80
|
81
|
82
|
83 /P/
|
84
|
85
|
86
|
87
|
88
|
89 |P|
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
99
|
100
|
101
|
102
|
103
|
104
|
105
|
106
|
107
|
108
|
109
|
110
|
111
|
112
|
113
|
114
|
115
|
116
|
117
|
118
|
119
|
120
|
121
|
122
|
123
|
124
|
125
|
126
|
127
|
128
|
129
|
130
|
131 |P|
|
132
|
133
|
134
|
135
|
136
|
137 |P|
|
138
|
139
|
140
|
141
|
142
|
143
|
144
|
145
|
146
|
147
|
148
|
149
|
150
|
151
|
152
|
153
|
154
|
155
|
156
|
157
|
158
|
159
|
160
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
231
|
232
|
233
|
234
|
235
|
236
|
237
|
238
|
239
|
240
|
351
|
352
|
353
|
354
|
355
|
356
|
357
|
358
|
359 |P|
|
360
|
371
|
...
|
...
|
...
|
...
|
...
|
377
|
...
|
...
|
...
|
601
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
610
|
981
|
...
|
...
|
...
|
...
|
...
|
987
|
...
|
...
|
...
|
1591
|
...
|
...
|
...
|
...
|
...
|
1597 |P|
|
...
|
...
|
...
|
2581
|
...
|
...
|
2584
|
...
|
...
|
...
|
...
|
...
|
...
|
4181
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
6761
|
...
|
...
|
...
|
6765
|
...
|
...
|
...
|
...
|
...
|
10941
|
...
|
...
|
...
|
...
|
10946
|
...
|
...
|
...
|
...
|
17711
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
28651
|
...
|
...
|
...
|
...
|
...
|
28657 |P|
|
...
|
...
|
...
|
46361
|
...
|
...
|
...
|
...
|
...
|
...
|
46368
|
...
|
...
|
The 11x33 (363) Grid
A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.
FIBONACCI SERIES
The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 (24th)
From Fibonacci 233 to 46368, there is such a spread of numbers that only the vertical column and horizontal row positions are certain. Any diagonal 45 degree relationships cannot be estimated, as is.
PRIMES
The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)
The Table has a 1-46368 linear sequence with a gap removed, between 154 and 232, that have no primes and no fibonacci numbers. Each Table then jumps to include fibonacci 233, then jumps again around 360 to include every fibonacci number to 46368 (24th). The number down the left side is the reference number (1, 12, 23, 34, etc.) in base 11.
The 1-11 is repeated upon a 11x33 grid with no extra 5th.
Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 3 prime has a linear relationship with 13 prime and 23 prime. 5 prime has a linear relationship with 17 prime and 29 prime. 7 prime has a linear relationship with 43 prime.
1
|
2 |P|
|
3 /P/
|
4 |P|
|
5 \P\
|
6
|
7 \P\
|
8
|
9
|
10
|
11 /P/
|
12
|
13 /P/
|
14
|
15
|
16
|
17 \P\
|
18
|
19 |P|
|
20
|
21
|
22
|
23 /P/
|
24
|
25
|
26
|
27
|
28
|
29 \P\
|
30
|
31 |P|
|
32
|
33
|
34
|
35
|
36
|
37 |P|
|
38
|
39
|
40
|
41 |P|
|
42
|
43 \P\
|
44
|
45
|
46
|
47 /P/
|
48
|
49
|
50
|
51
|
52
|
53 |P|
|
54
|
55
|
56
|
57
|
58
|
59 |P|
|
60
|
61 |P|
|
62
|
63
|
64
|
65
|
66
|
67 |P|
|
68
|
69
|
70
|
71 |P|
|
72
|
73 |P|
|
74
|
75
|
76
|
77
|
78
|
79 |P|
|
80
|
81
|
82
|
83 |P|
|
84
|
85
|
86
|
87
|
88
|
89 |P|
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
99
|
100
|
101
|
102
|
103
|
104
|
105
|
106
|
107
|
108
|
109
|
110
|
111
|
112
|
113
|
114
|
115
|
116
|
117
|
118
|
119
|
120
|
121
|
122
|
123
|
124
|
125
|
126
|
127
|
128
|
129
|
130
|
131 |P|
|
132
|
133
|
134
|
135
|
136
|
137 |P|
|
138
|
139
|
140
|
141
|
142
|
143
|
144
|
145
|
146
|
147
|
148
|
149
|
150
|
151
|
152
|
153
|
154
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
232
|
233
|
234
|
235
|
236
|
237
|
238
|
239
|
240
|
241
|
242
|
353
|
354
|
355
|
356
|
357
|
358
|
359 |P|
|
360
|
361
|
362
|
363
|
375
|
...
|
377
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
602
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
610
|
...
|
987
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
1591
|
...
|
...
|
...
|
...
|
...
|
1597 |P|
|
...
|
...
|
...
|
...
|
2581
|
...
|
...
|
2584
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
4181
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
6761
|
...
|
...
|
...
|
6765
|
...
|
...
|
...
|
...
|
...
|
...
|
10941
|
...
|
...
|
...
|
...
|
10946
|
...
|
...
|
...
|
...
|
...
|
17711
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
28651
|
...
|
...
|
...
|
...
|
...
|
28657 |P|
|
...
|
...
|
...
|
...
|
46361
|
...
|
...
|
...
|
...
|
...
|
...
|
46368
|
...
|
...
|
...
|
The 12x30 (360) Grid
A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.
FIBONACCI SERIES
The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)
PRIMES
The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)
The Table has a 1-360 linear sequence. The 1-15 is repeated upon a 12x30 grid with no extra 5th.
Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 4 prime has a linear relationship with 17 prime and 43 prime. 5 prime has a linear relationship with 83 prime.
1
|
2 |P|
|
3 |P|
|
4 \P\
|
5 \P\
|
6
|
7 |P|
|
8
|
9
|
10
|
11 /P/
|
12
|
13 |P|
|
14
|
15
|
16
|
17 \P\
|
18
|
19 |P|
|
20
|
21
|
22
|
23 |P|
|
24
|
25
|
26
|
27
|
28
|
29 |P|
|
30
|
31 |P|
|
32
|
33
|
34
|
35
|
36
|
37 |P|
|
38
|
39
|
40
|
41 |P|
|
42
|
43 \P\
|
44
|
45
|
46
|
47 |P|
|
48
|
49
|
50
|
51
|
52
|
53 |P|
|
54
|
55
|
56
|
57
|
58
|
59 |P|
|
60
|
61 |P|
|
62
|
63
|
64
|
65
|
66
|
67 |P|
|
68
|
69
|
70
|
71 |P|
|
72
|
73 |P|
|
74
|
75
|
76
|
77
|
78
|
79 |P|
|
80
|
81
|
82
|
83 \P\
|
84
|
85
|
86
|
87
|
88
|
89 |P|
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
99
|
100
|
101
|
102
|
103
|
104
|
105
|
106
|
107
|
108
|
109
|
110
|
111
|
112
|
113
|
114
|
115
|
116
|
117
|
118
|
119
|
120
|
121
|
122
|
123
|
124
|
125
|
126
|
127
|
128
|
129
|
130
|
131 |P|
|
132
|
133
|
134
|
135
|
136
|
137 |P|
|
138
|
139
|
140
|
141
|
142
|
143
|
144
|
145
|
146
|
147
|
148
|
149
|
150
|
151
|
152
|
153
|
154
|
155
|
156
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
229
|
230
|
231
|
232
|
233
|
234
|
235
|
236
|
237
|
238
|
239
|
240
|
349
|
350
|
351
|
352
|
353
|
354
|
355
|
356
|
357
|
358
|
359 |P|
|
360
|
The 13x28 (364) Grid
A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.
FIBONACCI SERIES
The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)
PRIMES
The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)
The Table has a 1-364 linear sequence. The 1-13 is repeated upon a 13x28 grid with no extra 5th.
Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 5 prime has a linear relationship, left, with 17 prime and 29 prime and also with 47 prime, right. 7 prime has a linear relationship with 43 prime. 11 prime has a linear relationship with 23 prime, 47 prime and 83 prime.
1
|
2 |P|
|
3 |P|
|
4 |P|
|
5 /\P\/
|
6
|
7 /P/
|
8
|
9
|
10
|
11 /P/
|
12
|
13 |P|
|
14
|
15
|
16
|
17 /P/
|
18
|
19 |P|
|
20
|
21
|
22
|
23 /P/
|
24
|
25
|
26
|
27
|
28
|
29 /P/
|
30
|
31 |P|
|
32
|
33
|
34
|
35
|
36
|
37 |P|
|
38
|
39
|
40
|
41 |P|
|
42
|
43 /P/
|
44
|
45
|
46
|
47 /\P/\
|
48
|
49
|
50
|
51
|
52
|
53 |P|
|
54
|
55
|
56
|
57
|
58
|
59 |P|
|
60
|
61 |P|
|
62
|
63
|
64
|
65
|
66
|
67 |P|
|
68
|
69
|
70
|
71 |P|
|
72
|
73 |P|
|
74
|
75
|
76
|
77
|
78
|
79 |P|
|
80
|
81
|
82
|
83 /P/
|
84
|
85
|
86
|
87
|
88
|
89 |P|
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
99
|
100
|
101
|
102
|
103
|
104
|
105
|
106
|
107
|
108
|
109
|
110
|
111
|
112
|
113
|
114
|
115
|
116
|
117
|
118
|
119
|
120
|
121
|
122
|
123
|
124
|
125
|
126
|
127
|
128
|
129
|
130
|
131 |P|
|
132
|
133
|
134
|
135
|
136
|
137 /P/
|
138
|
139
|
140
|
141
|
142
|
143
|
144
|
145
|
146
|
147
|
148
|
149
|
150
|
151
|
152
|
153
|
154
|
155
|
156
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
222
|
223
|
224
|
225
|
226
|
227
|
228
|
229
|
230
|
231
|
232
|
233
|
234
|
235
|
236
|
237
|
238
|
239
|
240
|
241
|
242
|
243
|
244
|
245
|
246
|
247
|
248
|
249
|
250
|
251
|
252
|
253
|
254
|
255
|
256
|
257
|
258
|
259
|
260
|
261
|
262
|
263
|
264
|
265
|
266
|
267
|
268
|
269
|
270
|
271
|
272
|
273
|
274
|
275
|
276
|
277
|
278
|
279
|
280
|
281
|
282
|
283
|
284
|
285
|
286
|
287
|
288
|
289
|
290
|
291
|
292
|
293
|
294
|
295
|
296
|
297
|
298
|
299
|
300
|
301
|
302
|
303
|
304
|
305
|
306
|
307
|
308
|
309
|
310
|
311
|
312
|
313
|
314
|
315
|
316
|
317
|
318
|
319
|
320
|
321
|
322
|
323
|
324
|
325
|
326
|
327
|
328
|
329
|
330
|
331
|
332
|
333
|
334
|
335
|
336
|
337
|
338
|
339
|
340
|
341
|
342
|
343
|
344
|
345
|
346
|
347
|
348
|
349
|
350
|
351
|
352
|
353
|
354
|
355
|
356
|
357
|
358
|
359 |P|
|
360
|
361
|
362
|
363
|
364
|
The 14x26 (364) Grid
A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.
FIBONACCI SERIES
The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)
PRIMES
The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)
The Table has a 1-364 linear sequence.
The 1-14 is repeated upon a 14x26 grid with no extra 5th.
Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|, including a prime that goes left and right \/P\/. Some unique characteristics about this Table is that the center primes begin at 5 prime, 7 prime, 11 prime and 13 prime.
1
|
2 |P|
|
3 /P/
|
4 /P/
|
5 |P|
|
6
|
7 |P|
|
8
|
9
|
10
|
11 |P|
|
12
|
13 |P|
|
14
|
15
|
16
|
17 \/P/\
|
18
|
19 |P|
|
20
|
21
|
22
|
23 |P|
|
24
|
25
|
26
|
27
|
28
|
29 /P/
|
30
|
31 |P|
|
32
|
33
|
34
|
35
|
36
|
37 |P|
|
38
|
39
|
40
|
41 |P|
|
42
|
43 /P/
|
44
|
45
|
46
|
47 |P|
|
48
|
49
|
50
|
51
|
52
|
53 |P|
|
54
|
55
|
56
|
57
|
58
|
59 |P|
|
60
|
61 |P|
|
62
|
63
|
64
|
65
|
66
|
67 |P|
|
68
|
69
|
70
|
71 |P|
|
72
|
73 |P|
|
74
|
75
|
76
|
77
|
78
|
79 |P|
|
80
|
81
|
82
|
83 |P|
|
84
|
85
|
86
|
87
|
88
|
89 |P|
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
99
|
100
|
101
|
102
|
103
|
104
|
105
|
106
|
107
|
108
|
109
|
110
|
111
|
112
|
113
|
114
|
115
|
116
|
117
|
118
|
119
|
120
|
121
|
122
|
123
|
124
|
125
|
126
|
127
|
128
|
129
|
130
|
131 |P|
|
132
|
133
|
134
|
135
|
136
|
137 \P\
|
138
|
139
|
140
|
141
|
142
|
143
|
144
|
145
|
146
|
147
|
148
|
149
|
150
|
151
|
152
|
153
|
154
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
225
|
226
|
227
|
228
|
229
|
230
|
231
|
232
|
233
|
234
|
235
|
236
|
237
|
238
|
239
|
240
|
241
|
242
|
243
|
244
|
245
|
246
|
247
|
248
|
249
|
250
|
251
|
252
|
253
|
254
|
255
|
256
|
257
|
258
|
259
|
260
|
261
|
262
|
263
|
264
|
265
|
266
|
267
|
268
|
269
|
270
|
271
|
272
|
273
|
274
|
275
|
276
|
277
|
278
|
279
|
280
|
281
|
282
|
283
|
284
|
285
|
286
|
287
|
288
|
289
|
290
|
291
|
292
|
293
|
294
|
295
|
296
|
297
|
298
|
299
|
300
|
301
|
302
|
303
|
304
|
305
|
306
|
307
|
308
|
309
|
310
|
311
|
312
|
313
|
314
|
315
|
316
|
317
|
318
|
319
|
320
|
321
|
322
|
323
|
324
|
325
|
326
|
327
|
328
|
329
|
330
|
331
|
332
|
333
|
334
|
335
|
336
|
337
|
338
|
339
|
340
|
341
|
342
|
343
|
344
|
345
|
346
|
347
|
348
|
349
|
350
|
351
|
352
|
353
|
354
|
355
|
356
|
357
|
358
|
359 |P|
|
360
|
361
|
362
|
363
|
364
|
The 15x24 (360) Grid
A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.
FIBONACCI SERIES
The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)
PRIMES
The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)
The Table has a 1-360 linear sequence. The 1-15 is repeated upon a 15x24 grid with no extra 5th.
Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that the center prime is at 4 and 13 and the left and right 45 degree angles begin at 3 prime, 5 prime, 7 prime and 11 prime.
1
|
2 |P|
|
3 \P\
|
4 |P|
|
5 /P/
|
6
|
7 \P\
|
8
|
9
|
10
|
11 /P/
|
12
|
13 |P|
|
14
|
15
|
16
|
17 /P/
|
18
|
19 |P|
|
20
|
21
|
22
|
23 \P\
|
24
|
25
|
26
|
27
|
28
|
29 |P|
|
30
|
31 |P|
|
32
|
33
|
34
|
35
|
36
|
37 |P|
|
38
|
39
|
40
|
41 |P|
|
42
|
43 |P|
|
44
|
45
|
46
|
47 /P/
|
48
|
49
|
50
|
51
|
52
|
53 |P|
|
54
|
55
|
56
|
57
|
58
|
59 |P|
|
60
|
61 |P|
|
62
|
63
|
64
|
65
|
66
|
67 |P|
|
68
|
69
|
70
|
71 |P|
|
72
|
73 |P|
|
74
|
75
|
76
|
77
|
78
|
79 |P|
|
80
|
81
|
82
|
83 /P/
|
84
|
85
|
86
|
87
|
88
|
89 |P|
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
99
|
100
|
101
|
102
|
103
|
104
|
105
|
106
|
107
|
108
|
109
|
110
|
111
|
112
|
113
|
114
|
115
|
116
|
117
|
118
|
119
|
120
|
121
|
122
|
123
|
124
|
125
|
126
|
127
|
128
|
129
|
130
|
131 |P|
|
132
|
133
|
134
|
135
|
136
|
137 /P/
|
138
|
139
|
140
|
141
|
142
|
143
|
144
|
145
|
146
|
147
|
148
|
149
|
150
|
151
|
152
|
153
|
154
|
155
|
156
|
157
|
158
|
159
|
160
|
161
|
162
|
163
|
164
|
165
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
227
|
228
|
229
|
230
|
231
|
232
|
233
|
234
|
235
|
236
|
237
|
238
|
239
|
240
|
241
|
242
|
243
|
244
|
245
|
246
|
247
|
248
|
249
|
250
|
251
|
252
|
253
|
254
|
255
|
256
|
257
|
258
|
259
|
260
|
261
|
262
|
263
|
264
|
265
|
266
|
267
|
268
|
269
|
270
|
271
|
272
|
273
|
274
|
275
|
276
|
277
|
278
|
279
|
280
|
281
|
282
|
283
|
284
|
285
|
286
|
287
|
288
|
289
|
290
|
291
|
292
|
293
|
294
|
295
|
296
|
297
|
298
|
299
|
300
|
301
|
302
|
303
|
304
|
305
|
306
|
307
|
308
|
309
|
310
|
311
|
312
|
313
|
314
|
315
|
316
|
317
|
318
|
319
|
320
|
321
|
322
|
323
|
324
|
325
|
326
|
327
|
328
|
329
|
330
|
331
|
332
|
333
|
334
|
335
|
336
|
337
|
338
|
339
|
340
|
341
|
342
|
343
|
344
|
345
|
346
|
347
|
348
|
349
|
350
|
351
|
352
|
353
|
354
|
355
|
356
|
357
|
358
|
359 |P|
|
360
|
The 16x23 (368) Grid
A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.
FIBONACCI SERIES
The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)
PRIMES
The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)
The Table has a 1-368 linear sequence.
The 1-16 is repeated upon a 16x23, reaching 16 per row.
Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 4 prime has a linear relationship with fibonacci 21, 55 and 89. 11 prime has a linear relationship with 131 prime. 13 prime has a linear relationship, left, with 43 prime and with 47 prime, right. 47 prime has a linear relationship with 137 prime.
1
|
2 |P|
|
3 |P|
|
4 \P\
|
5 |P|
|
6
|
7 |P|
|
8
|
9
|
10
|
11 /P/
|
12
|
13 \/P\/
|
14
|
15
|
16
|
17 |P|
|
18
|
19 |P|
|
20
|
21
|
22
|
23 |P|
|
24
|
25
|
26
|
27
|
28
|
29 |P|
|
30
|
31 |P|
|
32
|
33
|
34
|
35
|
36
|
37 |P|
|
38
|
39
|
40
|
41 |P|
|
42
|
43 |P|
|
44
|
45
|
46
|
47 \/P\/
|
48
|
49
|
50
|
51
|
52
|
53 |P|
|
54
|
55
|
56
|
57
|
58
|
59 |P|
|
60
|
61 |P|
|
62
|
63
|
64
|
65
|
66
|
67 |P|
|
68
|
69
|
70
|
71 |P|
|
72
|
73 |P|
|
74
|
75
|
76
|
77
|
78
|
79 |P|
|
80
|
81
|
82
|
83 |P|
|
84
|
85
|
86
|
87
|
88
|
89 |P|
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
99
|
100
|
101
|
102
|
103
|
104
|
105
|
106
|
107
|
108
|
109
|
110
|
111
|
112
|
113
|
114
|
115
|
116
|
117
|
118
|
119
|
120
|
121
|
122
|
123
|
124
|
125
|
126
|
127
|
128
|
129
|
130
|
131 /P/
|
132
|
133
|
134
|
135
|
136
|
137 |/P|/
|
138
|
139
|
140
|
141
|
142
|
143
|
144
|
145
|
146
|
147
|
148
|
149
|
150
|
151
|
152
|
153
|
154
|
155
|
156
|
157
|
158
|
159
|
160
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
225
|
226
|
227
|
228
|
229
|
230
|
231
|
232
|
233
|
234
|
235
|
236
|
237
|
238
|
239
|
240
|
241
|
242
|
243
|
244
|
245
|
246
|
247
|
248
|
249
|
250
|
251
|
252
|
253
|
254
|
255
|
256
|
257
|
258
|
259
|
260
|
261
|
262
|
263
|
264
|
265
|
266
|
267
|
268
|
269
|
270
|
271
|
272
|
273
|
274
|
275
|
276
|
277
|
278
|
279
|
280
|
281
|
282
|
283
|
284
|
285
|
286
|
287
|
288
|
289
|
290
|
291
|
292
|
293
|
294
|
295
|
296
|
297
|
298
|
299
|
300
|
301
|
302
|
303
|
304
|
305
|
306
|
307
|
308
|
309
|
310
|
311
|
312
|
313
|
314
|
315
|
316
|
317
|
318
|
319
|
320
|
321
|
322
|
323
|
324
|
325
|
326
|
327
|
328
|
329
|
330
|
331
|
332
|
333
|
334
|
335
|
336
|
337
|
338
|
339
|
340
|
341
|
342
|
343
|
344
|
345
|
346
|
347
|
348
|
349
|
350
|
351
|
352
|
353
|
354
|
355
|
356
|
357
|
358
|
359 |P|
|
360
|
361
|
362
|
363
|
364
|
3656
|
366
|
367
|
368 |P|
|
The 17x21 (374) Grid
A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.
FIBONACCI SERIES
The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)
PRIMES
The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)
The Table has a 1-374 linear sequence. The 1-17 is repeated upon a 17x22 grid with no extra 5th.
Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 5 prime has a linear relationship with 23 prime and 131 prime. 7 prime has a linear relationship with 43 prime. 11 prime also has a linear relationship with 43 prime, left and 29 prime, 47 prime and 83 prime, right.
1
|
2 |P|
|
3 |P|
|
4 |P|
|
5 \P\
|
6
|
7 \P\
|
8
|
9
|
10
|
11 \/P\/
|
12
|
13 \P\
|
14
|
15
|
16
|
17 |P|
|
18
|
19 |P|
|
20
|
21
|
22
|
23 \P\
|
24
|
25
|
26
|
27
|
28
|
29 \P\
|
30
|
31 |P|
|
32
|
33
|
34
|
35
|
36
|
37 |P|
|
38
|
39
|
40
|
41 |P|
|
42
|
43 \P\
|
44
|
45
|
46
|
47 \P\
|
48
|
49
|
50
|
51
|
52
|
53 |P|
|
54
|
55
|
56
|
57
|
58
|
59 |P|
|
60
|
61 |P|
|
62
|
63
|
64
|
65
|
66
|
67 |P|
|
68
|
69
|
70
|
71 |P|
|
72
|
73 |P|
|
74
|
75
|
76
|
77
|
78
|
79 |P|
|
80
|
81
|
82
|
83 \P\
|
84
|
85
|
86
|
87
|
88
|
89 |P|
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
99
|
100
|
101
|
102
|
103
|
104
|
105
|
106
|
107
|
108
|
109
|
110
|
111
|
112
|
113
|
114
|
115
|
116
|
117
|
118
|
119
|
120
|
121
|
122
|
123
|
124
|
125
|
126
|
127
|
128
|
129
|
130
|
131 |P|
|
132
|
133
|
134
|
135
|
136
|
137 |P|
|
138
|
139
|
140
|
141
|
142
|
143
|
144
|
145
|
146
|
147
|
148
|
149
|
150
|
151
|
152
|
153
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
222
|
223
|
224
|
225
|
226
|
227
|
228
|
229
|
230
|
231
|
232
|
233
|
234
|
235
|
236
|
237
|
238
|
239
|
240
|
241
|
242
|
243
|
244
|
245
|
246
|
247
|
248
|
249
|
250
|
251
|
252
|
253
|
254
|
255
|
256
|
257
|
258
|
259
|
260
|
261
|
262
|
263
|
264
|
265
|
266
|
267
|
268
|
269
|
270
|
271
|
272
|
273
|
274
|
275
|
276
|
277
|
278
|
279
|
280
|
281
|
282
|
283
|
284
|
285
|
286
|
287
|
288
|
289
|
290
|
291
|
292
|
293
|
294
|
295
|
296
|
297
|
298
|
299
|
300
|
301
|
302
|
303
|
304
|
305
|
306
|
307
|
308
|
309
|
310
|
311
|
312
|
313
|
314
|
315
|
316
|
317
|
318
|
319
|
320
|
321
|
322
|
323
|
324
|
325
|
326
|
327
|
328
|
329
|
330
|
331
|
332
|
333
|
334
|
335
|
336
|
337
|
338
|
339
|
340
|
341
|
342
|
343
|
344
|
345
|
346
|
347
|
348
|
349
|
350
|
351
|
352
|
353
|
354
|
355
|
356
|
357
|
358
|
359 |P|
|
360
|
361
|
362
|
363
|
364
|
365
|
366
|
367
|
368
|
369
|
370
|
371
|
372
|
373
|
374
|
The 18x20 (360) Grid
A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.
FIBONACCI SERIES
The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)
PRIMES
The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)
The Table has a 1-360 linear sequence.
The 1-18 is repeated upon a 18x20, reaching 18 per row.
Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 4 prime has a linear relationship with 23 prime. 5 prime has a linear relationship with 43 prime. 13 prime has a linear relationship with 47 prime. 13 prime has a linear relationship with fibonacci 89.
1
|
2 |P|
|
3 |P|
|
4 \P\
|
5 \P\
|
6
|
7 |P|
|
8
|
9
|
10
|
11 |P|
|
12
|
13 /\P/\
|
14
|
15
|
16
|
17 /P/
|
18
|
19 |P|
|
20
|
21
|
22
|
23 \P\
|
24
|
25
|
26
|
27
|
28
|
29 |P|
|
30
|
31 |P|
|
32
|
33
|
34
|
35
|
36
|
37 |P|
|
38
|
39
|
40
|
41 |P|
|
42
|
43 \P\
|
44
|
45
|
46
|
47 /P/
|
48
|
49
|
50
|
51
|
52
|
53 |P|
|
54
|
55
|
56
|
57
|
58
|
59 |P|
|
60
|
61 |P|
|
62
|
63
|
64
|
65
|
66
|
67 |P|
|
68
|
69
|
70
|
71 |P|
|
72
|
73 |P|
|
74
|
75
|
76
|
77
|
78
|
79 |P|
|
80
|
81
|
82
|
83 |P|
|
84
|
85
|
86
|
87
|
88
|
89 |P|
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
99
|
100
|
101
|
102
|
103
|
104
|
105
|
106
|
107
|
108
|
109
|
110
|
111
|
112
|
113
|
114
|
115
|
116
|
117
|
118
|
119
|
120
|
121
|
122
|
123
|
124
|
125
|
126
|
127
|
128
|
129
|
130
|
131 |/P|/
|
132
|
133
|
134
|
135
|
136
|
137 |P|
|
138
|
139
|
140
|
141
|
142
|
143
|
144
|
145
|
146
|
147
|
148
|
149
|
150
|
151
|
152
|
153
|
154
|
155
|
156
|
157
|
158
|
159
|
160
|
161
|
162
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
221
|
222
|
223
|
224
|
225
|
226
|
227
|
228
|
229
|
226
|
227
|
228
|
229
|
230
|
231
|
232
|
233
|
234
|
235
|
236
|
237
|
238
|
239
|
240
|
241
|
242
|
243
|
244
|
245
|
246
|
247
|
248
|
249
|
250
|
251
|
252
|
253
|
254
|
255
|
256
|
257
|
258
|
259
|
260
|
261
|
262
|
263
|
264
|
265
|
266
|
267
|
268
|
269
|
270
|
271
|
272
|
273
|
274
|
275
|
276
|
277
|
278
|
279
|
280
|
281
|
282
|
283
|
284
|
285
|
286
|
287
|
288
|
289
|
290
|
291
|
292
|
293
|
294
|
295
|
296
|
297
|
298
|
299
|
300
|
301
|
302
|
303
|
304
|
305
|
306
|
307
|
308
|
309
|
310
|
311
|
312
|
313
|
314
|
315
|
316
|
317
|
318
|
319
|
320
|
321
|
322
|
323
|
324
|
325
|
326
|
327
|
328
|
329
|
330
|
331
|
332
|
333
|
334
|
335
|
336
|
337
|
338
|
339
|
340
|
341
|
342
|
343
|
344
|
345
|
346
|
347
|
348
|
349
|
350
|
351
|
352
|
353
|
354
|
355
|
356
|
357
|
358
|
359 |P|
|
360
|
The 19x19 (361) Grid
A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.
FIBONACCI SERIES
The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)
PRIMES
The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)
The Table has a 1-361 linear sequence.
The 1-15 is repeated upon a 19x19 grid for the purpose of adding 5 extra notes (a 5th) to the 15 note series, reaching 19 per row.
Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that the center prime is at 7 and the left and right 45 degree angles begin at 3 prime and 11 prime.
There is also a linear relationship line between 11 prime and 137 prime.
131 prime and 359 prime are on the same vertical column as 17 prime. Is this what Mr. Henry was speaking about when he mentioned "square of 12 charts?"
1
|
2 |P|
|
3 \P\
|
4 \P\
|
5 \P\
|
6
|
7 |P|
|
8
|
9
|
10
|
11 /P/
|
12
|
13 \P\
|
14
|
15
|
16
|
17 /P/
|
18
|
19 |P|
|
20
|
21
|
22
|
23 \P\
|
24
|
25
|
26
|
27
|
28
|
29 /P/
|
30
|
31 |P|
|
32
|
33
|
34
|
35
|
36
|
37 |P|
|
38
|
39
|
40
|
41 |P|
|
42
|
43 \P\
|
44
|
45
|
46
|
47 /P/
|
48
|
49
|
50
|
51
|
52
|
53 |P|
|
54
|
55
|
56
|
57
|
58
|
59 |P|
|
60
|
61 |P|
|
62
|
63
|
64
|
65
|
66
|
67 |P|
|
68
|
69
|
70
|
71 |P|
|
72
|
73 |P|
|
74
|
75
|
76
|
77
|
78
|
79 |P|
|
80
|
81
|
82
|
83 |P|
|
84
|
85
|
86
|
87
|
88
|
89 |P|
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
99
|
100
|
101
|
102
|
103
|
104
|
105
|
106
|
107
|
108
|
109
|
110
|
111
|
112
|
113
|
114
|
115
|
116
|
117
|
118
|
119
|
120
|
121
|
122
|
123
|
124
|
125
|
126
|
127
|
128
|
129
|
130
|
131 |P|
|
132
|
133
|
134
|
135
|
136
|
137 /P/
|
138
|
139
|
140
|
141
|
142
|
143
|
144
|
145
|
146
|
147
|
148
|
149
|
150
|
151
|
152
|
153
|
154
|
155
|
156
|
157
|
158
|
159
|
160
|
161
|
162
|
163
|
164
|
165
|
166
|
167
|
168
|
169
|
170
|
171
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
...
|
229
|
230
|
231
|
232
|
233
|
234
|
235
|
236
|
237
|
238
|
239
|
240
|
241
|
242
|
243
|
244
|
245
|
246
|
247
|
248
|
249
|
250
|
251
|
252
|
253
|
254
|
255
|
256
|
257
|
258
|
259
|
260
|
261
|
262
|
263
|
264
|
265
|
266
|
267
|
268
|
269
|
270
|
271
|
272
|
273
|
274
|
275
|
276
|
277
|
278
|
279
|
280
|
281
|
282
|
283
|
284
|
285
|
286
|
287
|
288
|
289
|
290
|
291
|
292
|
293
|
294
|
295
|
296
|
297
|
298
|
299
|
300
|
301
|
302
|
303
|
304
|
305
|
306
|
307
|
308
|
309
|
310
|
311
|
312
|
313
|
314
|
315
|
316
|
317
|
318
|
319
|
320
|
321
|
322
|
323
|
324
|
325
|
326
|
327
|
328
|
329
|
330
|
331
|
332
|
333
|
334
|
335
|
336
|
337
|
338
|
339
|
340
|
341
|
342
|
343
|
344
|
345
|
346
|
347
|
348
|
349
|
350
|
351
|
352
|
353
|
354
|
355
|
356
|
357
|
358
|
359 |P|
|
360
|
361
|
Back to: 143 The Invisible Universe
Impossible Correspondence Index
? Copyright. Robert Grace. ...4